The Cosmic Microwave Background Radiation

PhD student Erik Elfgren, Sweden

Properties

- Omnipresent radiation
- Emitted when the universe was about 300 000 years old
- Almost isotropic
- Temperature T = 2,725 K
- $\cdot \Delta T$ variations in T are the seeds for galaxies, stars etc

Answers the questions:

- Expansion rate of the universe?
- Accelerating universe?
- Dark matter?
- Cosmological constant?
- Inflation?
- Superstring theory?

The Cosmic Microwave Background Radiation

PhD student Erik Elfgren, Sweden

Population III stars

• Heavy: $M \sim 100 \ M_{sun}$

• Metal poor: $Z \sim 10^{-5}$

Short lived: ~ 1 million yearsHot: T ~ 100 000 K

Finish as supernovae

Dust

- Produced by PopIII stars
- Heated by PopIII stars
- Emits IR light at $T_d > T_{CMB}$
- · Different spectrum than the CMB
- · Consists of e.g. N, O, Si

Reionization

- Occurs between z~5-15
- The photons heat the dust

Results

· No detectable dust 5<z<15

PopIII halos might be detected with future high-precision instruments

In collaboration with François-Xavier Désert, ARCHEOPS, Grenoble.

elf@mt.luth.se