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Abstract

Let k be an integer such that k is larger than or equal to zero, and let H be the Hilbert
number. In this paper, we use the method of describing functions to prove that in the Li/enard
equation, the upper bound for H (2k+1) is k. By applying this method to any planar polynomial
vector 2eld, it is possible to completely solve the second part of Hilbert’s 16th problem.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1900, Hilbert presented a list consisting of 23 mathematical problems (see [1]).
The second part of the 16th problem appears to be one of the most persistent in that
list, second only to the 8th problem, the Riemann conjecture. The second part of the
16th problem is traditionally split into three parts (see [2]).

Problem 1. A limit cycle is an isolated closed orbit. Is it true that a planar polynomial
vector $eld has but a $nite number of limit cycles?

Problem 2. Is it true that the number of limit cycles of a planar polynomial vector
$eld is bounded by a constant depending on the degree of the polynomials only?

Denote the degree of the planar polynomial vector 2eld by n. The bound on the
number of limit cycles in Problem 2 is denoted by H (n), and is known as the Hilbert
number. Linear vector 2elds have no limit cycles, hence H (1) = 0.
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Problem 3. Give an upper bound for H (n).

Let k be an integer such that k¿ 0. In 1977, Lins et al. [3] found examples with k
diGerent limit cycles in the Li/enard equation

ẋ = y − F(x);
ẏ =−x; (1)

where

F(x) = q2k+1x2k+1 + q2kx2k + · · ·+ q2x2 + q1x:
The degree of this polynomial vector 2eld is denoted by 2k + 1. The coeIcients qi

(for integers i such that 16 i6 2k+1) are real constants. Lins et al. [3] conjectured the
number k as the upper bound for the number of limit cycles of the Li/enard equation
(1). Their conjecture thus states that in the Li/enard equation (1), the upper bound
for H (2k + 1) is k.
In his list of mathematical problems for the next century, published in 1998, Smale

[4] mentioned the Li/enard equation (1) as a simpli2ed version of the second part of
Hilbert’s 16th problem (see [4]).
In the present paper, we will prove the conjecture stated by Lins et al. [3] in 1977,

thereby solving the simpli2ed version of the second part of Hilbert’s 16th problem
stated by Smale [4] in 1998.

2. Preliminaries

In this section, we will introduce the method of describing functions, which may be
used to calculate limit cycles in nonlinear dynamic systems (see [4]).
Consider a dynamic system

ẋ =Mx+ h(x);

where x is the m-dimensional vector of state variables, M is an m×m constant matrix
and h(x) is an m-dimensional vector of nonlinear functions.
Assume that the state variables are dominated by a harmonic term of a speci2c order

x ∼= a0 + a1 sin(!t);
where a0 is the m-dimensional vector of center values, a1 is the m-dimensional vector
of amplitudes and ! is the frequency. a0; a1 and ! are assumed to be real. a1 and !
are nonzero.
Then, approximate the vector of nonlinear functions by discarding higher harmonic

terms (terms of the form cos(r!t) and sin(r!t) for integers r such that r¿ 2)

h(x) ∼= �+Na1 sin(!t);
where � is an m-dimensional constant vector and N is an m×m constant matrix. The
components of N are called describing functions.
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The system becomes

ẋ =Ma0 + �+ (M +N)a1 sin(!t)

and solutions for a0; a1 and ! satisfy

Ma0 + �= 0; (2)

det(j!I −M −N) = 0; (3)

where I is the m× m identity matrix and j satis2es the equation j2 =−1.

3. Result

In this section, we will prove the conjecture stated by Lins et al. [3] in 1977, by
applying the method of describing functions to the Li/enard equation (1).

Theorem. Let k be an integer such that k¿ 0, and let H be the Hilbert number. For
the Li4enard equation (1), we have that the upper bound for H (2k + 1) is k.

Proof. Noticing that the state variable x of the Li/enard equation (1) behaves approxi-
mately like a sine function in simulations (see Fig. 1), we assume—in order to make a
good approximation of x—that both state variables are dominated by a harmonic term
of a speci2c order[

x

y

]
∼=
[
a0

b0

]
+

[
a1

b1

]
sin(!t) (4)

which gives that the Li/enard equation (1) becomes[
ẋ

ẏ

]
=

[
f(t)

g(t)

]
=

[−q1 1

−1 0

][
a0

b0

]
+

[−q1 1

−1 0

][
a1

b1

]
sin(!t)

+

[−q2k+1[a0 + a1 sin(!t)]2k+1 − q2k [a0 + a1 sin(!t)]2k − · · · − q2[a0 + a1 sin(!t)]2

0

]
:

Since the nonlinear function only aGects f(t), Eq. (2) gives that the constant part of
g(t) may be set equal to zero at this stage, so that a0 = 0.
The nonlinear function in f(t) becomes

−q2k+1x2k+1 − q2kx2k − · · · − q3x3 − q2x2

=− q2k+1a2k+11 sin2k+1(!t)− q2ka2k1 sin2k(!t)− · · ·
− q3a31 sin3(!t)− q2a21 sin2(!t)
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Fig. 1. Numerical integration of the Li/enard equation (1) when F(x) = x3 − x. In the left 2gures, the initial
conditions are x(0) = 0 and y(0) = 1. In the right 2gures, the initial conditions are x(0) = 0 and y(0) =−1.

=− q2ka2k1 [1 + cos(2!t)]k

2k
− q2k−2a2k−2

1 [1 + cos(2!t)]k−1

2k−1 − · · ·

−q2a
2
1[1 + cos(2!t)]

2

+

[
−q2k+1a

2k+1
1 [1 + cos(2!t)]k

2k
− q2k−1a2k−1

1 [1 + cos(2!t)]k−1

2k−1 − · · ·

−q3a
3
1[1 + cos(2!t)]

2

]
sin(!t)
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∼= −q2k�ka2k1 − q2k−2�k−1a2k−2
1 − · · · − q2�1a21

+[− q2k+1�ka2k+11 − q2k−1�k−1a2k−1
1 − · · · − q3�1a31] sin(!t)

such that each �l always is larger than or equal to 1=2l, for integers l such that
16 l6 k.
The Li/enard equation (1) becomes[

ẋ

ẏ

]
=

[−q1 1

−1 0

][
a0

b0

]
+

[−q2k�ka2k1 − q2k−2�k−1a2k−2
1 − · · · − q2�1a21

0

]

+

([−q1 1

−1 0

]
+

[−q2k+1�ka2k1 − · · · − q3�1a21 0

0 0

])[
a1

b1

]
sin(!t):

Letting the constant part of f(t) equal to zero according to Eq. (2) gives that

b0 = q2k�ka2k1 + q2k−2�k−1a2k−2
1 + · · ·+ q2�1a21 (5)

so that the coeIcients in front of the even powers of the polynomial F(x) only have
an impact on the center value b0 (see also Example 1).
Eq. (3) gives that the solutions for a1 and ! satisfy

!=±1 (6)

so that the dominant harmonic order is the 2rst one, and

q2k+1�ka2k1 + · · ·+ q3�1a21 + q1 = 0 (7)

which has at most k distinct zeros in terms of a21. For each such zero a
2
1, we have that

± a1 are solutions.
The approximation of the state variables as in Eq. (4) 2ts the solution in terms

of x. To solve for y, we notice that ẏ = −x from the Li/enard equation (1), which
gives that

y = b0 +
a1 cos(!t)

!
(8)

since x is as in Equation (4) and ! is nonzero. Notice that b0 still satis2es Eq. (5),
since we would get that same equation if we assumed that the state variables were
cosine functions instead of sine functions in Eq. (4).
Thus, the following are the possible cases for the state variables.

A. If a1 and ! are of the same sign,

x ∼= a1 sin t;

y ∼= b0 + a1 cos t:
B. If a1 and ! are of diGerent signs

x ∼= −a1 sin t;

y ∼= b0 − a1 cos t:
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Fig. 2. Numerical integration of the Li/enard equation (1) when F(x)=x3 +0:5x2−x and the initial condition
y(0) is positive.

For each distinct zero a21 of Eq. (7), these two cases correspond to the same limit
cycle. Simulations show that the sign of the initial condition y(0) determines whether
the trajectory follows the solution of case A or case B (see Fig. 1).
We thus have that for each unique x that may be approximated as in Eq. (4), there

exists a unique y as in Eq. (8). Therefore, we have that there exist at most k distinct
limit cycles in the Li/enard equation (1).
In Eq. (4), we assumed that the state variables were dominated by a harmonic term

of a speci2c order. If this assumption is not true, it is possible to increase the accu-
racy of the approximation of the state variables by adding higher harmonic terms to
Eq. (4). By doing this, and by going through the calculations one more time, we
would—if the state variables were not dominated by a harmonic term of a speci2c
order—end up with other amplitudes than in the 2rst calculation. It is of great impor-
tance for the result to understand that this change in amplitudes does not mean that
there exist additional limit cycles in the Li/enard equation (1)—it only means that the
new approximation of the state variables has a higher accuracy (see also [5]).
Thereby, we have proved that the maximum number k of limit cycles that exist in

the Li/enard equation (1), depends on the degree 2k + 1 of the polynomial F(x) only.
Hence, we have proved that the upper bound for H (2k + 1) is k.
Note that the method of describing functions may be used in a similar manner as

in the proof above, to 2nd the upper bounds for the Hilbert number in any planar
polynomial vector 2eld. Thus, it is possible to completely solve the second part of
Hilbert’s 16th problem by using this approach.
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Fig. 3. Numerical integration of the Li/enard equation (1) when F(x) = 0:25x5 − 2x3 + 0:25x and the initial
condition y(0) is positive. The initial conditions lie just outside the small cycle, and the trajectory is attracted
to it at 2rst. Then, at t = 55, it becomes attracted to the large cycle.

Example 1. Let F(x) = x3 + 0:5x2 − x (Fig. 2).
Eqs. (5)–(8) give that

x ∼= ±1:41 sin t; y ∼= 0:5± 1:41 cos t:

Example 2. Let F(x) = 0:25x5 − 2x3 + 0:25x (Fig. 3).
Eqs. (5)–(8) give that

x ∼=
{± 3:23 sin t;

± 0:51 sin t;

y ∼=
{± 3:23 cos t;

± 0:51 cos t:
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